Exploratory studies of novel sodium-ion battery systems

PI/Co-PI:Xiao-Qing Yang (BNL) and Seongmin Bak (BNL)

• Objective:

- To develop new advanced in situ material characterization techniques and apply these techniques sodium-ion battery systems).
- To provide guidance in development of Na-ion batteries systems with high energy and power density, low cost, good safety characteristics and long life.
- Impact:
- The results of this project will accelerate the deployment of electrical vehicles.

Title of Graph:

ex situ XAS Studies of Cr (b) and S (g) valance state during various charge-discharge stages

Accomplishments:

- NaCrS₂ as an anionic redox cathode material for sodium ion batteries has been studied using XRD and XAS.
- Air-stable O3-Type cathode materials
 NaNi_{0.45}Cu_{0.05}Mn_{0.4}Ti_{0.1}O₂ as cathode materials for Naion batteries have been studied using synchrotron based XANES and EXAFS.
- Honeycomb ordered Na₃Ni_{1.5}M_{0.5}BiO₆ (M = Ni, Cu, Mg, Zn) as high voltage layered cathode materials for sodium-lon batteries have been studied

FY 19 Milestones:

- Q1: Complete In situ XRD studies of new low-cost P2-type iron based cathode materials (Na_{0.7}[Cu_{0.15}Fe_{0.3}Mn_{0.55}]O₂) during cycling.
- Q2: Complete the Synchrotron based XAS studies of (Na_{0.7}[Cu_{0.15}Fe_{0.3}Mn_{0.55}]O₂) at different SOCs .
- Q3: Complete the soft x-ray absorption (sXAS) studies of (Na_{0.7}[Cu_{0.15}Fe_{0.3}Mn_{0.55}]O₂) at different SOCs
- Q4: Complete In situ XRD studies of new stabilized global P2 phase cathode material ($Na_{0.72}[Li_{0.24}Mn_{0.76}]O_2$) for sodium-ion batteries during charge-discharge cycling.
- FY19 Deliverables: Develop and apply synchrotron based XRD, XAS and TXM techniques to study the structural changes of new electrode materials for Na-ion batteries.

Funding:

— FY19: \$400,000, FY18: \$400,000, FY17: \$500,00